我的图书馆

     
可用条款限制搜索
找到 19645 条记录 排序依据 相关度 | 日期 | 题名 .
PRINTED MAT

题名 Analysis and Computation of Microstructure in Finite Plasticity / Sergio Conti, Klaus Hackl, editors.

出版资料 Cham : Springer Verlag, c2015.
目录
1.Numerical Algorithms for the Simulation of Finite Plasticity with Microstructures / Boris Kramer1
1.1.Introduction1
1.2.Preliminaries and Notation3
1.3.Convergent Adaptive Finite Element Method for the Two-Well Problem in Elasticity4
1.3.1.Review of the Model Problem5
1.3.2.Adaptive Algorithm6
1.3.3.Convergence for the Deformation Gradient9
1.4.Guaranteed Lower Energy Bounds for the Two-Well Problem10
1.4.1.Nonconforming FEM and Discrete Energy Functional10
1.4.2.Lower Energy Bounds12
1.4.3.Guaranteed Error Control for the Pseudo-stress15
1.4.4.Numerical Experiments16
1.5.Discontinuous Galerkin Method for Degenerate Convex Minimization Problems17
1.5.1.Optimal Design Benchmark18
1.5.2.Discontinuous Galerkin Methods20
1.5.3.Lifting Operator R20
1.5.4.Connection with the Nonconforming Method21
1.5.5.Adaptive Finite Element Method22
1.5.6.Computational Experiments22
1.5.7.₀أ-shaped Domain23
1.5.8.Slit Domain24
1.6.Conclusions and Outlook25
2.Variational Modeling of Slip: From Crystal Plasticity to Geological Strata / Carolin Kreisbeck31
2.1.Introduction31
2.2.Experimental Observation of Slip Microstructures in Nature33
2.2.1.Chevron Folds in Rocks34
2.2.2.Kink Bands in Stacks of Paper under Compression34
2.2.3.Simple Laminates in Shear Experiments in Crystal Plasticity36
2.3.The Hunt-Peletier-Wadee Model for Kink Bands37
2.4.Variational Modeling of Microstructure38
2.5.Models in Crystal Plasticity with One Active Slip System41
2.5.1.Variational Formulation of Crystal Plasticity42
2.5.2.Relaxation Results in Crystal Plasticity with One Slip System44
2.5.3.Heuristic Origin of the Laminates46
2.5.4.Relation to Kink Bands in Rocks49
2.5.5.Elastic Approximation51
2.5.6.Higher-Order Regularizations52
2.6.Beyond One Slip-System53
2.6.1.Two Slip Systems in a Plane53
2.6.2.Three Slip Systems in a Plane54
3.Rate-Independent versus Viscous Evolution of Laminate Microstructures in Finite Crystal Plasticity / Klaus Hackl63
3.1.Introduction63
3.2.Variational Modeling of Microstructures64
3.3.Single Slip Crystal Plasticity67
3.4.Partial Analytical Relaxation via Lamination67
3.5.Rate-Independent Evolution70
3.5.1.Evolution Equations70
3.5.2.Laminate Rotation71
3.5.3.Laminate Initiation72
3.5.4.Numerical Scheme72
3.6.Simulation of Rotating Laminates73
3.7.Viscous Evolution75
3.7.1.Evolution Equations76
3.7.2.Laminate Rotation77
3.7.3.Laminate Initiation77
3.8.Comparison of the Laminate Evolution for the Rate-Independent Case and the Viscosity Limit78
3.9.Conclusion and Discussion85
4.Variational Gradient Plasticity: Local-Global Updates, Regularization and Laminate Microstructures in Single Crystals / Christian Miehe89
4.1.Introduction90
4.2.A Multifield Formulation of Gradient Crystal Plasticity93
4.2.1.Introduction of Long-Range Field Variables93
4.2.2.Introduction of Short-Range Field Variables96
4.2.3.Energy Storage, Dissipation Potential and Load Functionals99
4.2.4.Rate-Type Variational Principle and Euler Equations102
4.2.5.Explicit Form of the Micro-force Balance Equations103
4.3.Algorithmic Formulation of Gradient Crystal Plasticity103
4.3.1.Time-Discrete Field Variables in Incremental Setting103
4.3.2.Update Algorithms for the Short-Range Field Variables104
4.3.3.Time-Discrete Incremental Variational Principle105
4.3.4.Space-Time-Discrete Incremental Variational Principle106
4.4.Example 1: Analysis of an F.C.C. Crystal Grain Aggregate108
4.4.1.Slip Systems and Euler Angles108
4.4.2.Voronoi-Tessellated Unit Cell under Shear109
4.5.Example 2: Laminate Microstructure in Single Crystals110
4.5.1.Double Slip Systems111
4.5.2.Implications of Same Plane Double Slip112
4.5.3.Laminate Deformation Microstructure in Single Crystal Copper114
4.6.Conclusion118
5.Variational Approaches and Methods for Dissipative Material Models with Multiple Scales / Alexander Mielke125
5.1.Introduction125
5.2.Variational Formulations for Evolution127
5.2.1.Generalized Gradient Systems and the Energy-Dissipation Principle128
5.2.2.Rate-Independent Systems and Energetic Solutions132
5.3.Evolutionary ₀أ-Convergence134
5.3.1.pE-convergence for Generalized Gradient Systems134
5.3.2.pE-convergence for Rate-Independent Systems137
5.4.Justification of Rate-Independent Models138
5.4.1.Wiggly Energies Give Rise to Rate-Independent Friction139
5.4.2.1D Elastoplasticity as Limit of a Chain of Bistable Springs141
5.4.3.Balanced-Viscosity Solutions as Vanishing-Viscosity Limits143
5.5.Rate-Independent Evolution of Microstructures147
5.5.1.Laminate Evolution in Finite-Strain Plasticity148
5.5.2.A Two-Phase Shape-Memory Model for Small Strains149
6.Energy Estimates, Relaxation, and Existence for Strain-Gradient Plasticity with Cross-Hardening / Patrick W. Dondl157
6.1.Introduction158
6.2.A Continuum Model for Strain-Gradient Plasticity with Cross Hardening159
6.2.1.Plastic Shear160
6.2.2.Locks and Cross-Hardening161
6.2.3.Geometrically Necessary Dislocations162
6.2.4.The Model163
6.3.Relaxation of the Single-Slip Condition164
6.4.Some Remarks about Existence of Minimizers168
6.5.Energy Estimates for a Shear Experiment168
6.6.Conclusions171
7.Gradient Theory for Geometrically Nonlinear Plasticity via the Homogenization of Dislocations / Caterina Ida Zeppieri175
7.1.Introduction175
7.2.Key Mathematical Challenges183
7.3.Heuristics for Scaling Regimes184
7.3.1.The Core Energy of a Single Dislocation184
7.3.2.The Core Energy of Many Dislocations186
7.3.3.The Interaction Energy187
7.4.Main Result189
7.4.1.Set-Up189
7.4.2.Results191
7.5.Ideas of Proof193
8.Microstructure in Plasticity, a Comparison between Theory and Experiment / Patrick W. Dondl205
8.1.Introduction205
8.2.Modeling Continuum Plasticity207
8.3.A Single-Pass Shear Deformation Experiment and the Resulting Microstructure208
8.3.1.Sample Preparation and Shear Deformation Experiments208
8.3.2.Digital Image Correlation for Strain Mapping and EBSD for Texture Mapping209
8.3.3.Outcome of the Single Crystal Shear Deformation Experiments210
8.3.4.Energy Minimizing Microstructure212
8.3.5.An Analysis of the Substructure Within the Lamination Bands215
8.4.Conclusions216
9.Construction of Statistically Similar RVEs / Jorg Schroder219
9.1.Introduction220
9.2.Statistically Similar RVEs222
9.2.1.Method223
9.2.2.Lower and Upper Bounds of RVEs224
9.2.3.Statistical Measures225
9.3.Construction and Analysis of SSRVEs233
9.3.1.Objective Functions235
9.3.2.Coupled Micro-macro Simulations240
9.3.3.SSRVEs Based on Different Sets of Statistical Measures241
9.3.4.Comparison of Stress on Microscale244
9.3.5.Analysis of Bounds248
9.4.Conclusion250
 Author Index257

复本

馆藏地 索书号 处理状态
 Innovative Univ. Library  QA931 .A46 2015    AVAILABLE
载体形态 xi, 256 p. : ill. ; 25 cm.
Content Type text txt rdacontent.
载体类型 unmediated n rdamedia.
Carrier Type volume nc rdacarrier.
丛编 Lecture notes in applied and computational mechanics, 1613-7736 ; v. 78.
Lecture notes in applied and computational mechanics ; v. 78. 1613-7736.
主题 Plasticity -- Mathematical models.
Microstructure -- Mathematical models.
其它责任者 Hackl, K. (Klaus), editor.
Conti, Sergio, 1971- editor.
国际标准书号 9783319182414
3319182412