Ma bibliothèque

     
Limiter la recherche aux exemplaires disponibles
19645 résultats trouvés.trié(s) par pertinence | date | Titre .
Imprimé
Auteur Français Br©Łzdov©Ł, Veronika.

Titre Atomistic computer simulations [electronic resource] : a practical guide / Veronika Br©Łzdov©Ł and David R. Bowler.

Adresse Bibliographique Weinheim : Wiley-VCH, ℗♭2013.
Table des matières
 PrefaceXV
 ReferencesXVI
 Color PlatesXVII
 Part One The World at the Atomic Scale1
1.Atoms, Molecules and Crystals3
1.1.Length- and Timescales3
1.2.Electrons in an Atom5
1.3.Local Environment of an Atom8
1.3.1.Electrons8
1.3.2.Local Arrangement of Atoms11
1.4.Most Favorable Arrangement of Atoms12
1.4.1.The Concept of Total Energy12
1.4.2.Beyond the Total Energy13
1.4.3.The Most Stable Configuration15
 References16
2.Bonding17
2.1.Electronic Ground State18
2.2.Types of Bonds18
2.2.1.Covalent Bonding21
2.2.2.Ionic Bonding22
2.2.3.Metallic Bonding24
2.2.4.Hydrogen Bonding25
2.2.5.Dispersion Bonding25
2.3.Bond Breaking and Creation26
2.4.Distortion of Bonds27
 References29
3.Chemical Reactions31
3.1.Chemical Equations31
3.2.Reaction Mechanisms32
3.3.Energetics of Chemical Reactions33
3.4.Every (Valence) Electron Counts37
3.5.The Energy Zoo38
 References39
4.What Exactly is Calculated?41
4.1.What Can Be Calculated?41
4.2.What Actually Happens?43
4.3.Models and Simulation Cells44
4.4.Energies47
4.5.Terms48
4.6.Liquid Iron: An Example50
 References53
 Part Two Introducing Equations to Describe the System55
5.Total Energy Minimization57
5.1.The Essential Nature of Minimization58
5.2.Minimization Algorithms59
5.2.1.Steepest Descents61
5.2.2.Conjugate Gradients62
5.2.3.Quasi-Newton Methods62
5.2.4.Alternatives63
5.2.5.Exploring Landscapes64
5.2.6.Scaling and Computational Cost66
5.3.Optimize with Success67
5.3.1.Initial Configuration67
5.3.2.Initial Forces, Choice of Algorithm and Parameters68
5.3.3.Fixing Atoms69
5.3.4.Scaling with System Size70
5.4.Transition States71
5.5.Pseudokeywords72
 References73
6.Molecular Dynamics and Monte Carlo75
6.1.Equations of Motion76
6.2.Time and Timescales77
6.3.System Preparation and Equilibration79
6.4.Conserving Temperature, Pressure, Volume or Other Variables81
6.5.Free Energies83
6.6.Monte Carlo Approaches84
6.7.Pseudokeywords for an MD Simulation86
 References87
 Part Three Describing Interactions Between Atoms89
7.Calculating Energies and Forces91
7.1.Forcefields92
7.1.1.Reliability and Transferability95
7.2.Electrostatics97
7.3.Electronic and Atomic Motion98
7.3.1.The Born-Oppenheimer Approximation99
7.3.2.Approximating the Electronic Many-Body Problem100
7.4.Electronic Excitations100
 References103
8.Electronic Structure Methods105
8.1.Hartree-Fock106
8.2.Going Beyond Hartree-Fock109
8.3.Density Functional Theory111
8.4.Beyond DFT114
8.5.Basis Sets116
8.6.Semiempirical Methods119
8.7.Comparing Methods121
 References124
9.Density Functional Theory in Detail127
9.1.Independent Electrons127
9.2.Exchange-Correlation Functionals128
9.3.Representing the Electrons: Basis Sets130
9.3.1.Plane Waves131
9.3.2.Atomic-Like Orbitals132
9.4.Electron-Nuclear Interaction133
9.4.1.Pseudopotentials133
9.4.2.PAW136
9.4.3.Using All Electrons136
9.5.Solving the Electronic Ground State136
9.5.1.Charge Mixing and Electrostatics137
9.5.2.Metals and Occupancy139
9.6.Boundary Conditions and Reciprocal Space139
9.7.Difficult Problems141
9.8.Pseudokeywords142
 References143
 Part Four Setting Up and Running the Calculation145
10.Planning a Project147
10.1.Questions to Consider147
10.1.1.Research Questions148
10.1.2.Simulation Questions149
10.2.Planning Simulations151
10.2.1.Making it Simple151
10.2.2.Planning and Adapting the Sequence of Calculations151
10.3.Being Realistic: Available Resources for the Project153
10.4.Creating Models155
10.5.Choosing a Method156
10.5.1.Molecular Mechanics and Forcefields156
10.5.2.Semiempirical Methods158
10.5.3.DFT159
10.5.4.Post-HF160
10.5.5.Post-DFT161
10.6.Writing About the Simulation162
10.7.Checklists163
 References164
11.Coordinates and Simulation Cell165
11.1.Isolated Molecules166
11.1.1.Cartesian Coordinates166
11.1.2.Molecular Symmetry167
11.1.3.Internal Coordinates169
11.2.Periodic Systems170
11.2.1.Fractional Coordinates171
11.2.2.Crystallography and Symmetry in Periodic Systems172
11.2.3.Supercells175
11.2.4.Understanding Crystallographic Notation: Space Groups175
11.2.5.Understanding Crystallographic Notation: Atomic Coordinates176
11.3.Systems with Lower Periodicity180
11.3.1.Surfaces in Crystallography180
11.3.2.Grain Boundaries and Dislocations182
11.3.3.Modeling Surfaces, Wires and Isolated Molecules182
11.4.Quality of Crystallographic Data186
11.5.Structure of Proteins187
11.6.Pseudokeywords188
11.7.Checklist189
 References190
12.The Nuts and Bolts193
12.1.A Single-Point Simulation193
12.2.Structure Optimization194
12.3.Transition State Search195
12.4.Simulation Cell Optimization197
12.5.Molecular Dynamics199
12.6.Vibrational Analysis200
12.6.1.Simulation of Anharmonic Vibrational Spectra201
12.6.2.Normal Mode Analysis202
12.6.3.Harmonic or Anharmonic?204
12.7.The Atomistic Model205
12.7.1.Small Beginnings205
12.7.2.Periodic Images and Duplicate Atoms205
12.7.3.Crossing (Periodic) Boundaries206
12.7.4.Hydrogen Atoms in Proteins207
12.7.5.Solvating a Protein209
12.8.How Converged is Converged?209
12.9.Checklists210
 References211
13.Tests213
13.1.What is the Correct Number?213
13.2.Test Systems214
13.3.Cluster Models and Isolated Systems215
13.4.Simulation Cells and Supercells of Periodic Systems216
13.5.Slab Models of Surfaces216
13.6.Molecular Dynamics Simulations217
13.7.Vibrational Analysis by Finite Differences218
13.8.Electronic-Structure Simulations219
13.8.1.Basis Sets219
13.8.2.Pseudopotentials and Projector-Augmented Waves220
13.8.3.K-Points in Periodic Systems220
13.9.Integration and FFT Grids221
13.10.Checklists222
 References223
 Part Five Analyzing Results225
14.Looking at Output Files227
14.1.Determining What Happened227
14.1.1.Has it Crashed?227
14.2.Why Did it Stop?229
14.2.1.Why it Did Not Converge?230
14.3.Do the Results Make Sense?233
14.4.Is the Result Correct?234
14.5.Checklist234
 References234
15.What to do with All the Numbers235
15.1.Energies236
15.1.1.Stability236
15.1.2.Relative Energies: Adsorption, Binding etc.239
15.1.3.Free Energies242
15.2.Structural Data242
15.2.1.Bond Lengths and Angles243
15.2.2.Distributions243
15.2.3.Atomic Transport244
15.2.4.Elastic Constants246
15.3.Normal Mode Analysis246
15.3.1.Irreducible Representations246
15.3.2.Selection Rules from Irreducible Representations250
15.3.3.Fundamentals, Overtones, and Combination Bands250
15.4.Other Numbers251
 References252
16.Visualization253
16.1.The Importance Of Visualizing Data253
16.2.Sanity Checks253
16.3.Is There a Bond?254
16.4.Atom Representations254
16.5.Plotting Properties256
16.5.1.Looking at Charge Density256
16.5.2.Density of States256
16.6.Looking at Vibrations257
16.7.Conveying Information258
16.7.1.Selecting the Important Bits258
16.7.2.From Three to Two Dimensions258
16.7.3.How to Make Things Look Different260
16.8.Technical Pitfalls Of Image Preparation264
16.8.1.JPEG, GIF, PNG, TIFF: Raster Graphics Images264
16.8.2.Manipulating Raster Graphics Images265
16.8.3.How to Get a 3D Scene into a 2D Image that Can Be Saved266
16.9.Ways and Means266
 References268
17.Electronic Structure Analysis269
17.1.Energy Levels and Band Structure269
17.2.Wavefunctions and Atoms271
17.3.Localized Functions273
17.4.Density of States, Projected DOS274
17.5.STM and CITS276
17.5.1.Tersoff-Hamann277
17.5.2.Bardeen278
17.6.Other Spectroscopies: Optical, X-Ray, NMR, EPR278
 References280
18.Comparison to Experiment283
18.1.Why It Is Important284
18.2.What Can and Cannot Be Directly Compared285
18.2.1.Energies285
18.2.2.Structural Data286
18.2.3.Spectroscopy288
18.2.4.Vibrational Spectroscopy290
18.2.5.Scanning Probes291
18.2.6.Barriers292
18.3.How to Determine Whether There is Agreement with Experiment293
18.4.Case Studies295
18.4.1.Proton Pumping in Cytochrome c Oxidase295
18.4.2.Bismuth Nanolines on Silicon300
 References304
 Appendix A UNIX307
A.1.What's in a Name307
A.2.On the Command Line308
A.3.Getting Around309
A.4.Working with Data309
A.5.Running Programs311
A.6.Remote Work312
A.7.Managing Data313
A.8.Making Life Easier by Storing Preferences314
A.9.Be Careful What You Wish For315
 Appendix B Scientific Computing317
B.1.Compiling317
B.2.High Performance Computing319
B.3.MPI and mpirun320
B.3.1.How to Run an MPI Job321
B.3.2.Scaling321
B.3.3.How to Kill a Parallel Job321
B.4.Job Schedulers and Batch Jobs322
B.4.1.How to Queue322
B.4.2.Submitting and Monitoring323
B.5.File Systems and File Storage324
B.6.Getting Help324
 Index325

Exemplaires

Localisation Cote Statut
 Innovative University Library  QC171.2 .B73 2013    AVAILABLE
Description 1 online resource.
Content Type text txt rdacontent.
Type De Document computer c rdamedia.
Carrier Type online resource cr rdacarrier.
Bibliography Includes bibliographical references and index.
Reproduction Electronic reproduction. Hoboken, N.J. Available via World Wide Web.
Source Of Description Print version record.
Local Note Multiple user access license.
Sujet Atoms -- Computer simulation.
Molecular dynamics -- Computer simulation.
Autre Auteur Bowler, D. R. (David R.)
Wiley InterScience (Online service)
Publié Avec Print version: Br©Łzdov©Ł, Veronika. Atomistic computer simulations. Weinheim : Wiley-VCH, ℗♭2013 9783527410699 3527410694.
ISBN 9783527671816
3527671811
9783527671847
3527671846
9781299448711
1299448712