Ma bibliothèque


LEADER 00000cam a2202065Ia 4500 
001    ocn907203642 
003    OCoLC 
005    20151102133153.0 
008    150403s2015    sz a     b    001 0 eng d 
020    9783319182414 
020    3319182412 
035    (OCoLC)907203642 
040    BTCTA|beng|cBTCTA|dYDXCP|dNUI|dNhCcYME 
050  4 QA931|b.A46 2015 
090    QA931|b.A46 2015 
245 00 Analysis and Computation of Microstructure in Finite 
       Plasticity /|cSergio Conti, Klaus Hackl, editors. 
260    Cham :|bSpringer Verlag,|cc2015. 
300    xi, 256 p. :|bill. ;|c25 cm. 
336    text|btxt|2rdacontent. 
337    unmediated|bn|2rdamedia. 
338    volume|bnc|2rdacarrier. 
490 1  Lecture notes in applied and computational mechanics,
       |x1613-7736 ;|vv. 78. 
650  0 Plasticity|xMathematical models. 
650  0 Microstructure|xMathematical models. 
700 1  Hackl, K.|q(Klaus),|eeditor. 
700 1  Conti, Sergio,|d1971-|eeditor. 
830  0 Lecture notes in applied and computational mechanics ;|vv.
       78.|x1613-7736. 
907    .b76521278|b04-12-16|c10-02-15 
910    RDA ENRICHED 
910    ybp 
910    Backstage 
910    TOC 
910    Hathi Trust report SPM 
910    BROWNu 
970 11 |l1.|tNumerical Algorithms for the Simulation of Finite 
       Plasticity with Microstructures|cBoris Kramer|fKramer, 
       Boris|p1 
970 11 |l1.1.|tIntroduction|p1 
970 11 |l1.2.|tPreliminaries and Notation|p3 
970 11 |l1.3.|tConvergent Adaptive Finite Element Method for the 
       Two-Well Problem in Elasticity|p4 
970 11 |l1.3.1.|tReview of the Model Problem|p5 
970 11 |l1.3.2.|tAdaptive Algorithm|p6 
970 11 |l1.3.3.|tConvergence for the Deformation Gradient|p9 
970 11 |l1.4.|tGuaranteed Lower Energy Bounds for the Two-Well 
       Problem|p10 
970 11 |l1.4.1.|tNonconforming FEM and Discrete Energy Functional
       |p10 
970 11 |l1.4.2.|tLower Energy Bounds|p12 
970 11 |l1.4.3.|tGuaranteed Error Control for the Pseudo-stress
       |p15 
970 11 |l1.4.4.|tNumerical Experiments|p16 
970 11 |l1.5.|tDiscontinuous Galerkin Method for Degenerate 
       Convex Minimization Problems|p17 
970 11 |l1.5.1.|tOptimal Design Benchmark|p18 
970 11 |l1.5.2.|tDiscontinuous Galerkin Methods|p20 
970 11 |l1.5.3.|tLifting Operator R|p20 
970 11 |l1.5.4.|tConnection with the Nonconforming Method|p21 
970 11 |l1.5.5.|tAdaptive Finite Element Method|p22 
970 11 |l1.5.6.|tComputational Experiments|p22 
970 11 |l1.5.7.|t₀أ-shaped Domain|p23 
970 11 |l1.5.8.|tSlit Domain|p24 
970 11 |l1.6.|tConclusions and Outlook|p25 
970 11 |l2.|tVariational Modeling of Slip: From Crystal 
       Plasticity to Geological Strata|cCarolin Kreisbeck
       |fKreisbeck, Carolin|p31 
970 11 |l2.1.|tIntroduction|p31 
970 11 |l2.2.|tExperimental Observation of Slip Microstructures 
       in Nature|p33 
970 11 |l2.2.1.|tChevron Folds in Rocks|p34 
970 11 |l2.2.2.|tKink Bands in Stacks of Paper under Compression
       |p34 
970 11 |l2.2.3.|tSimple Laminates in Shear Experiments in Crystal
       Plasticity|p36 
970 11 |l2.3.|tThe Hunt-Peletier-Wadee Model for Kink Bands|p37 
970 11 |l2.4.|tVariational Modeling of Microstructure|p38 
970 11 |l2.5.|tModels in Crystal Plasticity with One Active Slip 
       System|p41 
970 11 |l2.5.1.|tVariational Formulation of Crystal Plasticity
       |p42 
970 11 |l2.5.2.|tRelaxation Results in Crystal Plasticity with 
       One Slip System|p44 
970 11 |l2.5.3.|tHeuristic Origin of the Laminates|p46 
970 11 |l2.5.4.|tRelation to Kink Bands in Rocks|p49 
970 11 |l2.5.5.|tElastic Approximation|p51 
970 11 |l2.5.6.|tHigher-Order Regularizations|p52 
970 11 |l2.6.|tBeyond One Slip-System|p53 
970 11 |l2.6.1.|tTwo Slip Systems in a Plane|p53 
970 11 |l2.6.2.|tThree Slip Systems in a Plane|p54 
970 11 |l3.|tRate-Independent versus Viscous Evolution of 
       Laminate Microstructures in Finite Crystal Plasticity
       |cKlaus Hackl|fHackl, Klaus|p63 
970 11 |l3.1.|tIntroduction|p63 
970 11 |l3.2.|tVariational Modeling of Microstructures|p64 
970 11 |l3.3.|tSingle Slip Crystal Plasticity|p67 
970 11 |l3.4.|tPartial Analytical Relaxation via Lamination|p67 
970 11 |l3.5.|tRate-Independent Evolution|p70 
970 11 |l3.5.1.|tEvolution Equations|p70 
970 11 |l3.5.2.|tLaminate Rotation|p71 
970 11 |l3.5.3.|tLaminate Initiation|p72 
970 11 |l3.5.4.|tNumerical Scheme|p72 
970 11 |l3.6.|tSimulation of Rotating Laminates|p73 
970 11 |l3.7.|tViscous Evolution|p75 
970 11 |l3.7.1.|tEvolution Equations|p76 
970 11 |l3.7.2.|tLaminate Rotation|p77 
970 11 |l3.7.3.|tLaminate Initiation|p77 
970 11 |l3.8.|tComparison of the Laminate Evolution for the Rate-
       Independent Case and the Viscosity Limit|p78 
970 11 |l3.9.|tConclusion and Discussion|p85 
970 11 |l4.|tVariational Gradient Plasticity: Local-Global 
       Updates, Regularization and Laminate Microstructures in 
       Single Crystals|cChristian Miehe|fMiehe, Christian|p89 
970 11 |l4.1.|tIntroduction|p90 
970 11 |l4.2.|tA Multifield Formulation of Gradient Crystal 
       Plasticity|p93 
970 11 |l4.2.1.|tIntroduction of Long-Range Field Variables|p93 
970 11 |l4.2.2.|tIntroduction of Short-Range Field Variables|p96 
970 11 |l4.2.3.|tEnergy Storage, Dissipation Potential and Load 
       Functionals|p99 
970 11 |l4.2.4.|tRate-Type Variational Principle and Euler 
       Equations|p102 
970 11 |l4.2.5.|tExplicit Form of the Micro-force Balance 
       Equations|p103 
970 11 |l4.3.|tAlgorithmic Formulation of Gradient Crystal 
       Plasticity|p103 
970 11 |l4.3.1.|tTime-Discrete Field Variables in Incremental 
       Setting|p103 
970 11 |l4.3.2.|tUpdate Algorithms for the Short-Range Field 
       Variables|p104 
970 11 |l4.3.3.|tTime-Discrete Incremental Variational Principle
       |p105 
970 11 |l4.3.4.|tSpace-Time-Discrete Incremental Variational 
       Principle|p106 
970 11 |l4.4.|tExample 1: Analysis of an F.C.C. Crystal Grain 
       Aggregate|p108 
970 11 |l4.4.1.|tSlip Systems and Euler Angles|p108 
970 11 |l4.4.2.|tVoronoi-Tessellated Unit Cell under Shear|p109 
970 11 |l4.5.|tExample 2: Laminate Microstructure in Single 
       Crystals|p110 
970 11 |l4.5.1.|tDouble Slip Systems|p111 
970 11 |l4.5.2.|tImplications of Same Plane Double Slip|p112 
970 11 |l4.5.3.|tLaminate Deformation Microstructure in Single 
       Crystal Copper|p114 
970 11 |l4.6.|tConclusion|p118 
970 11 |l5.|tVariational Approaches and Methods for Dissipative 
       Material Models with Multiple Scales|cAlexander Mielke
       |fMielke, Alexander|p125 
970 11 |l5.1.|tIntroduction|p125 
970 11 |l5.2.|tVariational Formulations for Evolution|p127 
970 11 |l5.2.1.|tGeneralized Gradient Systems and the Energy-
       Dissipation Principle|p128 
970 11 |l5.2.2.|tRate-Independent Systems and Energetic Solutions
       |p132 
970 11 |l5.3.|tEvolutionary ₀أ-Convergence|p134 
970 11 |l5.3.1.|tpE-convergence for Generalized Gradient Systems
       |p134 
970 11 |l5.3.2.|tpE-convergence for Rate-Independent Systems|p137
970 11 |l5.4.|tJustification of Rate-Independent Models|p138 
970 11 |l5.4.1.|tWiggly Energies Give Rise to Rate-Independent 
       Friction|p139 
970 11 |l5.4.2.|t1D Elastoplasticity as Limit of a Chain of 
       Bistable Springs|p141 
970 11 |l5.4.3.|tBalanced-Viscosity Solutions as Vanishing-
       Viscosity Limits|p143 
970 11 |l5.5.|tRate-Independent Evolution of Microstructures|p147
970 11 |l5.5.1.|tLaminate Evolution in Finite-Strain Plasticity
       |p148 
970 11 |l5.5.2.|tA Two-Phase Shape-Memory Model for Small Strains
       |p149 
970 11 |l6.|tEnergy Estimates, Relaxation, and Existence for 
       Strain-Gradient Plasticity with Cross-Hardening|cPatrick 
       W. Dondl|fDondl, Patrick W.|p157 
970 11 |l6.1.|tIntroduction|p158 
970 11 |l6.2.|tA Continuum Model for Strain-Gradient Plasticity 
       with Cross Hardening|p159 
970 11 |l6.2.1.|tPlastic Shear|p160 
970 11 |l6.2.2.|tLocks and Cross-Hardening|p161 
970 11 |l6.2.3.|tGeometrically Necessary Dislocations|p162 
970 11 |l6.2.4.|tThe Model|p163 
970 11 |l6.3.|tRelaxation of the Single-Slip Condition|p164 
970 11 |l6.4.|tSome Remarks about Existence of Minimizers|p168 
970 11 |l6.5.|tEnergy Estimates for a Shear Experiment|p168 
970 11 |l6.6.|tConclusions|p171 
970 11 |l7.|tGradient Theory for Geometrically Nonlinear 
       Plasticity via the Homogenization of Dislocations
       |cCaterina Ida Zeppieri|p175 
970 11 |l7.1.|tIntroduction|p175 
970 11 |l7.2.|tKey Mathematical Challenges|p183 
970 11 |l7.3.|tHeuristics for Scaling Regimes|p184 
970 11 |l7.3.1.|tThe Core Energy of a Single Dislocation|p184 
970 11 |l7.3.2.|tThe Core Energy of Many Dislocations|p186 
970 11 |l7.3.3.|tThe Interaction Energy|p187 
970 11 |l7.4.|tMain Result|p189 
970 11 |l7.4.1.|tSet-Up|p189 
970 11 |l7.4.2.|tResults|p191 
970 11 |l7.5.|tIdeas of Proof|p193 
970 11 |l8.|tMicrostructure in Plasticity, a Comparison between 
       Theory and Experiment|cPatrick W. Dondl|fDondl, Patrick W.
       |p205 
970 11 |l8.1.|tIntroduction|p205 
970 11 |l8.2.|tModeling Continuum Plasticity|p207 
970 11 |l8.3.|tA Single-Pass Shear Deformation Experiment and the
       Resulting Microstructure|p208 
970 11 |l8.3.1.|tSample Preparation and Shear Deformation 
       Experiments|p208 
970 11 |l8.3.2.|tDigital Image Correlation for Strain Mapping and
       EBSD for Texture Mapping|p209 
970 11 |l8.3.3.|tOutcome of the Single Crystal Shear Deformation 
       Experiments|p210 
970 11 |l8.3.4.|tEnergy Minimizing Microstructure|p212 
970 11 |l8.3.5.|tAn Analysis of the Substructure Within the 
       Lamination Bands|p215 
970 11 |l8.4.|tConclusions|p216 
970 11 |l9.|tConstruction of Statistically Similar RVEs|cJorg 
       Schroder|fSchroder, Jorg|p219 
970 11 |l9.1.|tIntroduction|p220 
970 11 |l9.2.|tStatistically Similar RVEs|p222 
970 11 |l9.2.1.|tMethod|p223 
970 11 |l9.2.2.|tLower and Upper Bounds of RVEs|p224 
970 11 |l9.2.3.|tStatistical Measures|p225 
970 11 |l9.3.|tConstruction and Analysis of SSRVEs|p233 
970 11 |l9.3.1.|tObjective Functions|p235 
970 11 |l9.3.2.|tCoupled Micro-macro Simulations|p240 
970 11 |l9.3.3.|tSSRVEs Based on Different Sets of Statistical 
       Measures|p241 
970 11 |l9.3.4.|tComparison of Stress on Microscale|p244 
970 11 |l9.3.5.|tAnalysis of Bounds|p248 
970 11 |l9.4.|tConclusion|p250 
970 01 |tAuthor Index|p257 
998    s0001|b10-02-15|cm|da|e-|feng|gsz |h0|i1 
998    s0001|b10-02-15|cm|da|e-|feng|gsz |h0|i1 
Localisation Cote Statut
 Innovative University Library  QA931 .A46 2015    AVAILABLE